Exhaust-ive Learning:
Deep Reinforcement Learning for Energy Reduction
on Highways

Leah Dickstein
Electrical Engineering and Computer Science
University of California, Berkeley
Email: leahdickstein @berkeley.edu

Abstract—The energy currently consumed by highways
is enough to power 21 million homes in the United States.
Within the next decade autonomous vehicles will be on our
highways, transporting people and goods and navigating
among human-powered vehicles. We investigated whether
a set of autonomous vehicles with a central controller could
beneficially guide traffic, reducing the systems overall
energy consumption. After solving a toy control prob-
lem, we experimented with various reinforcement learning
problem formulations before finding one that represented
our problem and provided meaningful results. With our
current formulation the autonomous cars drive as fast
and steadily as possible, but dont have opportunities to
guide the human-powered vehicles. Moving forward, we
will implement safety constraints in the action space and
try congested traffic environments to explore the optimal
policy in different scenarios.

I. INTRODUCTION

Transportation comprises about 28% of US annual
energy consumption, with highways representing 21%
of annual energy consumption. The energy currently
consumed by highways is enough to power 21 million
homes in the United States. As energy is a major
problem in our global future, our goal is to reduce energy
consumption/emissions in a way that can be realized
on our roads soon. In the next few decades, experts
have projected that we will have a partial penetration of
autonomous vehicles on the road. Our project explores
the opportunity of using these autonomous vehicles as
control inputs for the traffic system to reduce system-
level energy consumption.

Platooning

Eco-driving

Congestion mitigation
De-emphasized performance
Improved crash avoidance
Vehicle right-sizing

Higher highway speeds
Increased features

Travel cost reduction

New user groups

Changed mobility services

Infrastructure footprint*

-60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60%
% changes in energy consumption due to vehicle automation

Fig 1. Wadud et al. [1] projected what would happen to
energy consumption with full automation of highways.
There has been no work done, however, on partial
penetration.

In particular, congestion mitigation could save up to
5% of overall fuel consumption, and improved crash
avoidance could save up to 20% of fuel consumption.
We wish to validate these numbers and explore if we
can achieve even greater fuel reduction using optimized
policies (instead of fuel reduction being a side benefit
of highway automation).

Related work: Francois Belletti, another graduate stu-
dent in Professor Bayens lab, used reinforcement learn-
ing with a convolutional net to learn a policy for traffic
metering [2]. The state space was discretized locations
on a highway, and the policy learned represented number
of cars to allow onto the highway via on-ramps (and
leaving via off-ramps). They used a novel weight-sharing
algorithm called Mutual Weight Regularization, which
we think will be useful for our multi-agent control
scheme (where potentially our multiple agents can share
information). Stevens and Yeh [3] used reinforcement
learning on traffic lights to increase traffic flow through

intersections. Polson and Sokolov [4] used a deep learn-
ing architecture with dropout and hierarchical sparse
vector auto-regressive techniques to predict traffic flows,
demonstrating success even during highly nonlinear spe-
cial events. Lv et al. [5] used hierarchical autoencoding
as well, so that they can learn features to represent states
involving both space and time. Since our inputs will be
spatio-temporal, we will investigate these feature encod-
ing techniques. Karlaftis and Vlahogianni [6] present
an overview comparing non-neural statistical methods
versus neural networks in transportation research.

II. PROBLEM STATEMENT

We wish to learn control policies for | K| autonomous
vehicles (where |K| is one of many hyperparameters)
and a central controller with the objective of minimiz-
ing vehicular energy consumption. For example, these
vehicles may mitigate traffic jams and congestion by
promoting a constant flowing of cars on highways and
minimizing travel time and acceleration/deceleration. We
initially study the setting where autonomous vehicles
are empty (for example, they are employed by the
government and their sole purpose is to follow the policy
to decrease energy consumption).

How can a small team of autonomous vehicles in a
complex mixed-autonomy traffic network setting mini-
mize vehicular energy consumption of the entire system?

We pose the problem within the reinforcement learn-
ing framework:

o State: (v,z,y, f,d):, sequence/trajectory of posi-
tion, velocity, acceleration all vehicles.

o Policy: a function f (v,z,y, f,d)ey —
(ai, zi)icr, which maps the state to control actions
for each autonomous vehicle (acceleration, lateral
change).

o Note that k represents all vehicles while K repre-
sents the set of autonomous vehicles

o Reward function: — 3, 0.9 - distance_to_target +
0.1 fuel_consumption = —3%;. 0.9 - (3.36km —
di) + 0.1 fj

« Example controls: Steering (e.g. lane changes), de-
celeration/braking, and acceleration/throttling.

e Success measure: Average return, which
corresponds to total fuel consumption over
the rollout or a metric that captures mpg for each
car

We believe this is the first investigation of partial
penetration of autonomous vehicles, and as such there

are many interesting questions to explore. Some ex-
ample questions we are interested in are: Can a few
autonomous vehicles reduce overall energy consumption
of the traffic network? Can they stabilize traffic? How
many autonomous vehicles are needed, and what vari-
ables affect the number of autonomous vehicles needed?
Is it possible to reduce energy while decreasing travel
time, or is it only possible if everyone slows down?
How much information do the autonomous vehicles
need? How much communication between cars or with
the infrastructure is needed? Is it possible to guide
traffic with a decentralized algorithm? Do we learn new
behaviors or do the reinforcement learning methods learn
engineering-designed behaviors (such as platooning or
Adaptive Cruise Control)? How will humans react to the
self-driving cars and can we model the behaviors using
generative adversarial networks (GANs)? How well do
learned policies transfer between different highway en-
vironments?

III. APPROACH
A. Data

Fig 2. An example circular highway with 22 vehicles.

This project used the open-source microscopic traffic
simulator SUMO [7]. SUMO outputs precise informa-
tion about each vehicles position over time, emissions,
lane changing events, etc. Since the solution is only
as good/realistic as the simulator is realistic, we will
(separate from this project) modify SUMO to make sure
it matches with known real-world highway behaviors and
output accurate energy emission values.

Other team members are working on an interface so
that we can experiment with more fine-grained traffic
dynamics and compare the deep reinforcement learning
method with the control theoretic baseline. This interface

that we are developing will use smaller time-steps to
update the controls (for more precise results) and use a
more realistic lane-changing model.

I wrote Python scripts to generate XML files that
specify the circular highway environment we are using
for the SUMO simulation. I first had 22 cars on a smaller
0.5km length highway, and I eventually settled on 12 cars
on a 0.84km highway as the best initial test environment.
I also wrote a Python script so that the autonomous
vehicles are uniformly distributed among the human-
powered vehicles on the highway.

B. Baseline Model

For our baseline model we solved a toy control
problem: bring all cars velocity from 20m/s to 25m/s.
The reward function was the mean-squared error from
the goal velocity, summed over all the autonomous
vehicles. This posing of the Markov Decision Process
(MDP) meant there was no difference between partial
and full observability. For the neural net architecture
I used a single-layer 16-neuron neural net because I
noticed the more standard 2-layer 32-neuron neural net
was overfitting. I used the TRPO algorithm [8], which
was developed at Berkeley, and 5 seeds because TRPO
has randomness. The state was just the velocity of
the autonomous vehicles and the action space was the
acceleration we could give each car.

Gaussian MLP Policy

(€]
> (Network
weights)

/
{ DNN p n
Test
state —<T L
DNN o |
v

Action

Training 3 RI'.
data Algorithm

Fig 3. Graphic representation of a Gaussian MLP Policy

I chose to learn a Gaussian MLP Policy which works
as follows: The training data of each iteration is com-
posed of several rollouts, or sequences of states and ac-
tions. At the end of each iteration, I use a reinforcement
learning algorithm (such as TRPO) to update 6, or the
network weights. 6 corresponds to two DNNs, one that
represents the mean and one that represents standard
deviation. Then when I input a test state it is run through
the two separate DNNs to generate a mean and standard

deviation, which is used to create a multivariate Gaussian
over the action space. I sample from the Gaussian to get
the action that will be applied next.

C. Final Model

One of the challenges of reinforcement learning is
coercing the MDP to be both solvable (an optimum
exists) and meaningful. We originally planned on having
a state (z,y, v, a) ;, which would represent 2D position,
velocity, and acceleration. This didnt provide enough
useful information and we had both high variance and
convergence to a suboptimal result. After trying different
states, I eventually settled on (v,z,y, f,d);r as my
state. This removes acceleration, which was redundant
given velocity, and adds fuel consumption in the last
timestep and distance travelled so far. Since the reward
function is based on fuel consumption and distance
travelled, that information needs to be encoded in the
state. If fuel and distance arent included, the problem is
non-injective and the results will have extremely high
variance. With the new, larger state each (v,z,y, f,d)
is a unique state with the correct deterministic reward,
the problem becomes injective and the algorithm can
effectively learn the connection between the state and
reward function.

State No. of Vehicles | Dimensionality
V) 2 2
) 12 12
X, y, V, a) 2 8
X, y, v, a) 12 48
v, x,y, 1, d) 2 10
v, X, y, f, d) 12 60
v, x,y, f,d) 20 100

This table shows some of our experiments and the
corresponding changes in problem dimensionality. For
example, if the state is (v,x,y, f,d) and there are 12
autonomous vehicles on the highway, the observation
will be the flattened vector of all 12 vehicles’ states
(dimension 60). Relative to the toy problem, the state
grew from 2 dimensions to 60 dimensions. Since the
problem was now more complicated, we returned the
neural net architecture to the more standard 2-layer 32-
neuron neural net. So far weve been working with a
miniature problem of 12 total vehicles on the highway,
but in the future well want to test with the full-size setup
of 400 total vehicles and 20+ autonomous vehicles.

I initially began with a naive reward function — >, f
. This reward function causes all the cars to stop in the
road (or as many cars as possible), indicating we need a

component that incentivizes reaching a destination. Thus
our current reward function is a weighted average be-
tween fuel consumption and distance from a destination
(set to 3.36km or 4 times the length of the track) for
all the cars — >, 0.9 - (3.36km — dj) + 0.1f;. Future
work would involve tweaking the weights in the reward
function and investigating how the policy changes.

IV. RESULTS

In reinforcement learning, the algorithm sam-
ples data as it trains and tries to explore intelli-
gently. Thus, traditionally there is no concept of a
train/validate/partitioning. Instead, there is a training
period of some rollouts: in our case we used a batch size
of 2,000 samples per iteration and typically trained for
1,000 iterations. At some point the return will converge,
implying the policy has converged to an optimum. Suc-
cess is determined by total return averaged over all the
rollouts in the final iteration. One can generate rollouts
using the learned policy, representing test time.

A. Baseline Model

After I could run experiments on AWS, I was able
to supply enough computational power to solve the
problem. The following figure represents several test-
time rollouts using the learned policy for the 2-vehicle
case. In this experiment I would run each rollout for 500
timesteps.

Example Trajectories

w
&

Velocity m/s
- N N w
G 8 o 8

.
S

o

[100 200 300 400 500
Path Length

Fig 4. Example test-time rollouts from the solved
baseline problem.

I can make the problem more difficult by increasing
the number of vehicles, thus linearly growing the state
and action dimensionality. The results are as follows:

Baseline Model: Different # of Autonomous Vehicles

Fig 5. The results for the baseline model when we
varied the number of autonomous vehicles. Quantitative
results provided in the table below.

No. of cars | Avg Return / Total Cars | Error
1 -20 +0.22
2 -70 +0.42
3 -154 40.62
4 -464 +1.08
6 -873 +1.48
12 -1,109 +1.66

As the problem becomes more difficult, the returns (as
expected) are lower and take longer to converge. Error
represents difference in velocity from the goal velocity
of 25m/s. The increase in error in this problem is an
optimistic signal that multi-agent control might not be
as difficult as we initially feared.

B. Final Model

The main difference I noticed between the partial ob-
servability and full observability case is higher variance.
The following figure compares an experiment where the
state is only velocity and the reward function is the
negative sum of fuel consumption. One can qualitatively
notice that the full observability converged faster and
then stayed near the converged value, whereas in the
partial observability case the policy was extremely un-
stable and the return could grow worse. In some cases
the policy in the partial observability case caused traffic
jams and the program would crash, whereas this never
happened in the full observability case.

Full observability

0 100 200 300 400 500 600 700 800 900
Iterations

Partial observability

0 100 200 300 400 500 600 700 800 900
Iterations

Fig 6. The return for each seed in the partial
observablity case vs the full observability case. Notice
that the partial observability case has greater variance

and is more unstable.

With our reward function, the distance to destination
component is heavily weighted so that the optimal be-
havior is for all the cars to drive as fast as possible.
The following figures represent an experiment with 2
autonomous vehicles and 12 vehicles on an 0.84km
highway, with a final destination achieved after driving
3.36km.

Cars 2 /12 Itr 1000

e
WA) s
7 AN

KA TN
,.'/"A'i"" K

Car 5
Car6 ||
Car7
Car8 [
Car 9
Car 10 4
Car 11

Velocity m/s
~
B

N
=)

N
N

[N}
=

N
5

20 20 60 80 100
Rollout/Path Length

Notice that the autonomous vehicles Car 0 and Car 6
drive steadily at 35 m/s while the other human-powered
vehicles oscillate around 34 m/s.

Cars 12 /12 Itr 1000

Car 0
Carl
Car2 |
Car 3
Car 4
cars ||
Car 6
Car7 |]
Car 8
Car 9
Car 10 |{
Car 11

=
=5

Fuel Consumption mL
o

40 60
Rollout/Path Length

In addition, fuel consumption for the autonomous
vehicles was a steady 2.31mL, whereas fuel consumption
for the human-powered vehicles tended to jaggedly jump
between 0 and 4mL. This could be an artifact of how
SUMO ”drives” the human-powered vehicles, and needs
to be investigated further.

No. of cars ‘ Total Return
Baseline: 0 -1.84M
2 -1.80M
12 -1.88M

A surprisingly result is that the return significantly
improved between the baseline (no autonomous vehicles)
and 2 autonomous vehicles, then worsened with 12
autonomous vehicles. This remains to be investigated,
although a hypothesis is that the larger action space made
the problem more difficult.

V. TooLs

For software I used rllab [9], which is an open-source
reinforcement learning library developed at Berkeley.
Experiments are run on AWS EC2 spot instances, which
allows us to run many multi-hour experiments in parallel.
I used the Docker platform to build a virtual machine on
Maven 3 (a variant of Ubuntu) with rllab, SUMO, and
all dependencies set up. The image is available publicly
on DockerHub here.

VI. CONCLUSION

Although the goal of this research is to reduce energy
consumption on highways, it must be posed as a sec-
ondary goal of the MDP. The primary goal is for cars
to reach their destinations, which needs a much higher
weighting in the reward function. In addition, I learned
how to run experiments on AWS and interface rllab with
SUMO. Many of our results need to be investigated
further: the partial vs full observability comparison, how

https://hub.docker.com/r/lahaela/rllab-sumo/

multi-agent control will affect our results and what hap-
pens when we tweak the weights in the reward function.

Moving forward, were interested in implementing
constraints in the action space to ensure the learned
policy is collision-free. The interesting case is when
traffic is congested and there is risk of jams, but we can
only construct these experiments when were confident
the cars wont crash into each other. Weve chosen not
to implement a negative penalty for crashes because it
would impact the gradient too heavily and the cars would
choose to stop in the highway instead of reaching their
destinations. The alternative is that the cars keep driving
but the penalty for crashes is too low and the learned
policy encourages unsafe, fast driving.

Our interface to the simulator right now is pro-
hibitively slow: it takes roughly 4 hours to get 2 million
samples, and in the future well want 6+ million samples.
I am working on improving the interface to the simulator:
1) I open an I/O connection to the simulator subprocess
every rollout and I plan on reducing that to once per
iteration 2) I will integrate with OpenAls parallel sam-
pler, which does rollouts in parallel. Hopefully we can
do rollouts in parallel on separate AWS spot instances;
if not, I will look into implementing that myself.

Finally, there are a couple other directions we can go.
Weve been primarily working on the single lane case to
get it to work, so we want to expand to multiple lanes be-
cause the results will be more interesting. Having many
autonomous vehicles will quickly blow up the action
space, leading to high variance. One of our ideas for
variance reduction is finding a baseline thats dependent
on both state and action while remaining either bias-free
or relatively low bias.

TEAM CONTRIBUTIONS
Leah Dickstein: 100%

ACKNOWLEDGMENTS

This work was done in collaboration with Professor
Alex Bayen’s lab, as a project under Berkeley Deep-
Drive. 1 would like to acknowledge Cathy Wu for
organizing the group and providing invaluable feedback
and advice. In addition, Yan (Rocky) Duan provided help
and support working with rllab. Eugene Vinitsky, Kanaad
Parvate, and Nathan Mandi had interesting questions,
insights, and advice.

REFERENCES

[1] Zia Wadud, Don MacKenzie, Paul Leiby. “Help
or hindrance? The travel, energy and carbon impacts

of highly automated vehicles”. (2016). Transportation
Research Part A: Policy and Practice Vol. 86 Pages 1-18

[2] Francois Belletti, Daniel Haziza, Gabriel

Gomes, Joseph Gonzalez, and Alexandre Bayen
(2016) Expert level control of Ramp Metering
based on Multi-task Deep Reinforcement
Learning. Neural Information Processing Systems
Deep Reinforcement Learning Workshop.

https://drive.google.com/file/d/0B 1PUpk7kwWu-
TXVNTUIQcTVueDhCQnYzOUdSdOINTlowNEJR/view

[3] Stevens, M. and Yeh, C. (2016).
Reinforcement Learning for Traffic Optimization.
http://cs229.stanford.edu/proj2016spr/report/047.pdf

[4] Polson, N. and Sokolov, V. (2016). Deep Learning
Predictors for Traffic Flows. arXiv preprint arXiv:
1604.04527

[5] Lv, Y., Duan, Y., Kang, W.,, Li, Z., and Wang,
F-Y. (2015). Traffic flow prediction with big data:
A deep learning approach. Intelligent Transportation
Systems, IEEE Transactions on, 16(2):865-873.

[6] Karlaftis, M. and Vlahogianni, E. (2011).
Statistical methods versus neural networks in
transportation research: differences, similarities,

and some insights. Transportation Research Part C:
Emerging Technologies, 19(3):387-399.

[7] Daniel Krajzewicz, Jakob Erdmann, Michael
Behrisch, Laura Bieker. Recent Development and
Applications of SUMO - Simulation of Urban
MObility. International Journal on Advances in Systems
and Measurements, Vol. 5, 2012.

[8] John Schulman, Sergey Levine, Philipp Moritz,
Michael Jordan, Pieter Abbeel. Trust Region Policy
Optimization. arXiv: 1502.05477v4, Jun 2016.

[9] Yan Duan, Xi Chen, Rein Houthoos, John Schul-
man, Pieter Abbeel. Benchmarking Deep Reinforcement
Learning for Continuous Control. Proceedings of the
33rd International Conference on Machine Learning
(ICML), 2016.

	Introduction
	Problem Statement
	Approach
	Data
	Baseline Model
	Final Model

	Results
	Baseline Model
	Final Model

	Tools
	Conclusion

